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ABSTRACT:The existing literature on process scheduling issues have either ignored 

installation times or assumed that installation times on all machines is free by association with 

the task sequence. This working arrangement addresses hybrid flow shop scheduling issues 

under which there are sequence-dependent configuration times referred to as HFS with SDST. 

This family of production systems are common in industries such as biological printed circuit 

boards, metallurgy and vehicles and automobiles making. Due to the increasing complexity of 

industrialized sectors, simple planning systems have failed to create a realistic industrial 

scheduling. Therefore, a hybrid multi-agent and immune algorithm can be used as an 

alternative approach to solve complex problems and produce an efficient industrial schedule in 

a timely manner. We propose in this paper a multi-agent and immune hybrid algorithms for 

scheduling HFS with SDST. The findings of this paper suggest that the proposed algorithm 

outperforms some of the existing ones including PSO (particle swarm optimization), GA 

(Genetic Algorithm), LSA (Local Search Algorithm) and NEHH (Nawaz Enscore and Ham).  

KEYWORDS: Hybrid flow shops; Multi Agent System; Immune algorithms; Makespan; 

Sequence dependent setup times. 

 

1 INTRODUCTION 

The flow shop problem (FS) has been 

recognized as one of the most prominent challenges 

within the literature of scheduling systems (Gupta 

& Stafford, 2006). In FS, all actions lead to 

identical work instructions (processing method) that 

need to be processed at each step. This has been 

considered as a fundamental problem in the 

literature. Subsequently, the seminal work by (Brah, 

1999) and (Gupta, 2000) has emphasized the 

importance of the HFS issue, prompting a growing 

research interest and contribution to the literature 

scheduling. In this context, it is important not to 

mix the HFS with multi-processor flow shop or 

flexible flow line when setting up machines 
simultaneously during the HFS production floors. 

According to (Brah, 1999) and (Gupta, 2000), 

available machines at each floor are identical. In all 

workshop-planning problems, the solution is to 

allow conducting a production sequence for the 

work performed on the machines to meet optimal 

performance standards and criteria.  

One key difficulty in HFS is identifying a 

feasible schedule. This is because the scope of 

potential scheduling increases exponentially with 

the total number of diverse searches to process and 

the number of tasks executed in the production 

process. Thus, the two-floor HFS (through a 

machine in the first floor and a group of machines 

in the second floor) is an NP-Complex (Gupta & 

Stafford, 2006). In addition, (Andres, 2005) showed 

that if priority is allowed, the problem can also be 

NP-Complete. 

Furthermore, most of the existing literature 

assumes that ‘setup time’ is a negligible aspect or 

part of the work processing time. This, however, 

may have undesirable effects on the quality of the 

solution and may not produce an optimal schedule, 

which in turns affect the performance of production 

units. Therefore, it is important to incorporate 

‘setup time’ in scheduling choices and in 

instructions to address an additional representative 

alternative of HFS problems. This paper, hence, 

aims to address this aspect and proposes an 

extension to the existing literature by incorporating 

setup time in scheduling choices. While there are 
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several configurations that explicitly incorporate 

time, we employ sequence dependent setup time, 

SDST, which is widely used in the literature. As a 

result, we propose a hybrid flow-shop with 

sequence dependent setup time configuration (HFS 

with SDST) and ‘makespan’ criterion 

HFS/SDST/Cmax (Vignier & Al, 1995). In this 

context, (Johnson &, 1954) develops the 

mathematical prototypical aimed at dealing with 

HFS/SDST/Cmax. We follow the mathematical 

model proposed by (Johnson &, 1954), which is 

complementary to several problems than HFS and 

appropriate to the NP-Complete problems.  

In this paper, we study the performance of the 

immune algorithm system (IAS) under multi-agent 

system. Common existing methods have provided 

current applications for similar research, which are 

widely combined to create a new IAS with 

configurations that are more advanced than the 

earlier version. In addition, we also compare the 

performance of our methodology to the most recent 

applications and methods proposed in the literature 

of computational intelligence, intelligence-oriented 

procedures such as PSO (particle swarm 

optimization) (Li & Al, 2014), GA (Genetic 

Algorithm)(Vignier & Al, 1999)(Kurtz & Askin, 

2004)(Norman  & Bean, 2001), LSA (Local Search 

Algorithm)(Ren & Al, 2015), NEHH (Nawaz 

Enscore and Ham)(Liu & Al, 2016), simulated 

annealing, Tabou search, amongst others. 

The remainder of this paper is organized as 

follows. Section 2 provides a critical literature 

review on the HFS with SDST. Section 3 introduces 

the method we propose for scheduling, which 

suggest using MAS with IAS technique as well as 

proposing a novel AI technique. We illustrate the 

application of our approach in Section 4. This also 

include testing its performance in comparison to 

other existing approaches. Finally, Section 5 

concludes. 

2 REVIEW OF RELATED 

LITERATURE 

The purpose of this section is to survey the 

main literature related to HFS and Cmax criterion. 

The literature highlights both studies that employ 

SDST and those that do not. In this context, (Riane 

& Al, 1998) represent an earlier contribution to the 

literature of HFS, which provides a general 

treatment of optimal two and three- stage 

production schedules with setup times. Subsequent 

literature extended the concept of scheduling to 

include hybrid HFS in various settings most notably 

by (Gao & Al, 2006) and (Salvador, 1973). 

(Yoshida  & Hotomi, 1979) proposed a B&B 

technique to minimize the Cmax criterion. It has 

been shown that the optimal schedule is obtained 

when Cmax reaches its minimum. 
This is, however, has been not always 

achievable as HFS problems may vary with context 

and nature of the problems leading to the rise of 

various heuristic solutions. For example,  (Portmann 

& Al, 1998) and (Allahverdi  & Al, 2008) develop 

two methods based on Johnson's algorithm, while 

(Gupta & Stafford, 2006) proposes a novel 

technique based on the longest heuristic processing 

time (LHPT). In addition, bio-inspired methods 

have become increasingly popular with methods 

ranging from metaheuristic and evolutionary 

methods to Genetic Algorithm (GA) methods as 

proposed by (Vignier & Al, 1999) and (Kurtz & 

Askin, 2004). These methods have been 

implemented independently or combined with the 

existing standard heuristic methods. For example, 

(Serifoglu  & Ulusoy, 2004) extends the B&B 

suggested by (Gao & Al, 2006) by introducing a 

number of heuristics at the beginning of the search 

and GA to increase the performance during the 

search in the B&B process to find an improved 

value of the upper bound. In (Yoshida  & Hotomi, 

1979), discuss scheduling under a hybrid three-

stage flow shop problem that follows a specific 

structure that consist of a machine in the first stage, 

two machines in the second stage, and one machine 

in the third stage. (Aghezzaf & Al, 1995) propose 

two heuristic procedures based on the Cmax 

criterion.  

One particular case of interest HFS problems is 

when SDST constraint is included. This latter is a 

common constraint in various industries and reflect 

a realistic representation by considering cases as 

common as the change of color, formats, and others, 

in the production process. This may have been one 

of the least dealt with aspects in historically; yet it 

has significant implications and received a great 

attention in recent literature. It worth noting that 

various solutions to this type of problems proposed 

so far in the literature are generally approximate 

solutions and not exact.  

Recent literature proposed various approaches 

to solve the HFS with SDST problem. For example, 

(Zandieh & Al, 2006) proposed to measure 

measured scheduling HFS using Cmax, through no 

buffers among floors and no SDST. B&B-bound 

methods are practical to control the best variation 

schedule compared to Cmax. The flow-shop 

problems considered by (Yaurima  & Al, 2009) 

distinguish setup times from processing times. In 

addition, (Gupta & Stafford, 2006) reviews a 

number of HFS with SDST problems and possible 

methods to solve them, with emphasis on the two-

machine flow-shop problem. (Gupta,2000) discuss 
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HFS scheduling problem that consider a feasible 

model with two-agents where the exclusion periods 

for all Works in all floors are separated from 

processing times. In (Naderi & Al, 2010) two 

techniques are proposed to minimize the Cmax in 

textile manufacturing. 

The difficulty of the problem, however, has 
grown with many approaches leaning towards 

heuristic or hybrid metaheuristics. (Vignier & Al, 

1995) offer a complete survey of FS problems 

including HFS problems concerning set up time, 

with and without SD. (Norman  & Bean, 2001) 

consider issues concerning HFS and propose two 

algorithms to deal with the hybrid and flexible set 

up of the problem. (Hung & Ching, 2013) Suggest 

an AI approach and show that it outperforms the 

RKGA proposed by (Norman  & Bean, 2001). 

Moreover, group scheduling, within the context of 

HFS problem, is also presented in (Kurtz & Askin, 

2004).  

(Ruiz & Al, 2005) Study a Genetic Algorithm 

for the HFS with SDST, and availability limits. 

Furthermore, (Ebrahimi & AL, 2017) suggest two 

innovative algorithms that treat machines working 

simultaneously and address factors of scheduling 

problem. (Srikar & Ghosh, 2014) measure a 

variation FS with SDST in their MILP model, 

which used less variables than earlier models. 

(Srikar & Ghosh, 2014) Employed consequence 

variables that capture whether a Work is scheduled 

for a certain period of time before another Work.  

(Wang & Al, 2019) study the problem of two-

floor no-wait HFS problem and examine in which 

the SDST at the first stage is considered. Various 

methods are developed including a BB method, TS 

and three heuristic. Findings from computational 

experiments show that the proposed methods are 

efficient.  

(Li & Al, 2014) suggest a hybrid algorithm that 

combines PSO and ILS approaches to solve HFS 

with PM activities. The proposed approach 

examines various crossovers operators and mutation 

operators.  

(Almeder & Hartl, 2013) attempt to assess the 

efficiency of GA algorithms, via the minimization 

of Cmax as the optimization criterion, in a more 

realistic setting. Furthermore, (Almeder & Hartl, 

2013) propose two advanced GA, which showed 

superiority to those existing metaheuristics 

algorithms  

The above discussion suggest that the there is a 

little work done in the literature of HFS with SDST, 

which justifies the need for further research and 

development in this area. Thus, our aim is to we aim 

to contribute to the literature by developing a 

Hybrid Multi Agent and Immune algorithm 

approach to solve this complex problem. 

3 MULTI-AGENT IMMUNE 

SCHEDULING ALGORITHM   

Under the method we propose, MAISA, let 

antigens be the objective function (the Cmax 

function) to optimized and antibodies denote 

candidate solution. . MAISA approach is developed 

based on clonal selection and particularly inspired 

through the suggested CLONALG technique. 

MAISA too is founded on the standard of the 

maturing affinity of the artificial immune system, 

AIS.  

MAISA begins with a number of antibodies, 

called a population. The population is improved by 

a set of operators until the stopping rule – criterion 

– is met.  
The iterative process of MAISA to generate the 

population is described as follows:  

 First, we apply an acceleration mechanism. 

Using acceleration mechanism, candidate 

solutions with better aptitude are moved to the 

next population. 

 The antibodies of the new population are 

multiplied by mutation and crossover operators. 

 The antibodies submitted to operators are 

selected using a selection function, which uses 

the optimal value of each antibody as well as 

applying affinity computation.  

 Candidate solutions with better Cmax have 

higher likelihood of being selected to produce 

the next generation of candidate solutions.  

 The aim of this mechanism is to ensure the 

next generation will contain a large number of 

candidate solutions with good properties. 

On the other hand, the computation of affinities 

between antibodies consists of process of 

eliminating the similar antibodies. This achieves the 

following task: 

A candidate solution is assigned a lower 

probability if its value is greater than the affinity 

threshold value (AT). The assigned probability is 

computed by multiplying the previous probability 

obtained from large number of of antibodies with a 

lower operators, which is the affinity setting (AS). 

This will lower the likelihood of being selected.  

3.1 MAISA Flowchart  
 

Fig. 1 illustrates a detailed flowchart of the 

proposed MAISA approach for HFS with SDST 

scheduling. Each agent under MAISA approach 
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performs the same process, which involves the 

computation of the objective function (Fitness). 

This latter corresponds to the value of the 

makespan.  

The agent performs the following operations: 

 

  Construct a set of antibodies (SP) as the 

initial population.  

 Compute the correct antibody values.  

 Compute the affinity values of the 

antibodies. 

 Perform an acceleration mechanism. 

 Select two parents using a selection 

mechanism. 

 Make a uniform crossover (CUS). 

 Make a single-point mutation (SPM).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1 MAISA Flowchart for HFS with SDST scheduling 

 

3.2 MAISA Algorithm 
The algorithm of the MAISA method is 

presented in Table 1 as follows: 

 
 

3.3 Coding scheme and operators 

3.3.1 Parameter Setting 

The initial parameters need to include the 

following: the size of the population(SP), the 

number of solutions relative to the population (Qp), 

the probability of mutation (Cm), the mass of 

similarity structures (M1, M2, M3, M4), the affinity 

threshold (AT) and affinity setting (AS). 

3.3.2 Generating the initial population 

 Producing arbitrarily an initial populace 

of (SP-4) antibodies. 

 Create antibodies by PSO. 

 Create antibodies by GA. 

 Create antibodies by LSA. 

 Create antibodies by NEHH. 

 

 

 

 

 

 

 

 

 

 

Table 1.MAISA Algorithm 

MAISA Algorithm 

For all Agent do 
Generate a set of antibodies (SP) as an initial 
population. 

     While ending condition is not attained do 
           Compute the values of antibodies 
          Determine antibody affinity values 
          Set up the fitness endpoints of the antibodies 
          Perform an acceleration mechanism                 
        For I = Nr + 1 to SP do               //Nr individuals 
             Select two parents by a selection mechanism 

 Make the CUS crossover and produce the i-th 
successor 

              If  rand <Pm then  
                   Create a SPM mutation on the i-th successor 
              End if 
         End for 
      End While 
 End for    

 

Selection Mechanism 

 

Agent 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Assessment  

of Cmax 
Encode 

Solutions 

Start 
Resolution Area 

PSO  

GA 

NEHH 

LSA 

  Random 
Population  

Antibody 

Antibody 

Antibody 

 
End? 

Yes  

No  

End 

SPM  

Mutation 

CUS Crossover  

Record the best 

known resolution 

Assessment  

of affinity 

Record the best 

known resolution 

Shift 

The best resolution 
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3.3.3 Hazard key 

The Coding technique we adopt in this work is 

Hazard key (HK), which was illustrated by (Hung 

& Ching, 2013) and extended and further 

generalized by (Ruiz & Al, 2005).The key 

advantage of HK is in its simplicity and flexibility. 

The HK algorithm is described as  shadows in Table 

2 as follows:  

For this study, we need to generate found 

random numbers from the uniform distribution 

within the range (1, 1 + n1) towards the initial floor 

as shown in Fig.2: 
 

2.86 1.68 2.42 1.43 

Fig.2. Encoded resolution by HK representation. 

It is well recognized that the first solutions can 

greatly affect the final results obtained by MAISA. 

We consequently produced first solutions as 

follows: four solutions are created by the technique 

PSO, GA, NEHH and LSA, and the remainder is 

produced arbitrarily. Antibodies with low Cmax are 

desired and, consequently, a sum of antibodies (Nr) 

with the lowest value of Cmax are automatically 

copied to the next generation. This mechanism is 

known as reproduction. The remaining antibodies 

(SP - Nr) % or offspring are produced by crossing 

two other sequences or parents by an operator called 

a crossover operator. Crossover operators must 

avoid generating non-feasible solutions.  

 

 

3.3.4 Assortment device 

For the choice of parents experience crossover, 

we utilize the arrangement assortment that might 

be defined as shadows: 

3.3.5 CUS Crossover  

The objective is to produce a superior 

descendant that is to approximately, to generate 

enhanced arrangements through merging the 

parents. Our crossover is uniformly set (CUS), 

since it has presented its success in the works of 

(Ruiz & Al, 2005). It is required to require that the 

study of CUS by hazard keys and presented as 

shadows: 

The process is demonstrated arithmetically by 

relating it to an instance through n = 6 and m = 2 

displayed in Fig. 3. 

 

 

 

Table 2. HK Algorithm 

HK Algorithm 

For every Work do 

    Allocate a real number whose integer part is the 

number of the machines to which the Work is 

allocated 

    The fractional part is used to order the Works 

assigned to each machine.  

    Only Hazard numbers are utilized for floor1.  

    They define the Work arrangement and task just 

for floor 1. 

     For all the following floors j, {j = 2,  …, n} do 

           The Work sequence is determined by the 

earliest times of completion of Works in the 

previous floor.  

         The machine allocation rule is the first 

available machine. 

     End for 

  End for 

 

Table 3.  Assortment Device Algorithm. 

Assortment Device   Algorithm 

The entities of the present population are principal 

organized conferring to their Cmax. 

For every antibody do 

 Allocate a uniform possibility so that the greatest 

resolutions are additional probable to be 

designated. 

End for 

- Entities are arbitrarily designated as parents to 

acquiesce to factors founded on their   possibilities.      

 

Table 4.  CUS Algorithm. 

CUS Algorithm 

For every Work do 

       Produced a hazard numeral among (0, 1). 

End for 

       If  the value is fewer than 0.7 then 

the HK of the Work conforming to 

parents 1  

               is derivative to the child, 

       else, the CA of parents 2 is designated. 

       End if 

 Works are categorized conferring to the climbing 

order of the HK. 
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Parents 1  2,86 1,78 2,82 1,43 2,74 1,50 

        

Parents 2  1,24 2,95 2,35 1,85 2,33 1,77 

        

Hazard N°  0,36 0,43 0,79 0,21 0,98 0,33 

        

Child  2,86 1,78 2,35 1,43 2,33 1,50 

Fig. 3.  Technique for CUS crossover practical to an 

instance with n = 6 and m = 2. 

3.3.6 SPM Mutation 

A mutation mechanism is applied to nip the 

arrangement, i.e. produce a novel order, however 

analogous.  

The key resolution of the use of mutation is to 

escape merging to a local optimum and 

differentiating population. The mutation mechanism 

can too be seen as an easy procedure of limited 

exploration. 

Various scientists have determined that only the 

SPM mutation can offer improved consequences 

than additional mutations such as SWAP or 

overturn. 

Consequently, we practice single point mutation 

(Ebrahimi & AL, 2017). SPM technique can be 

specified as shadows: 

- HK of Work an arbitrarily selected at hazard is 

restarted. Fig. 4 displays a descriptive explanation 

that transforms. 

 

 

Fig. 4.  SPM Mutation to an instance through n = 6 

and m = 2 

3.3.7 Fitness 

In general, the objective function, Fitness, 

includes one or more performance indicators that 

capture the effectiveness of an antibody. The 

candidate antibodies are first transformed into a 

valid schedule. Then, they are evaluated using an 

objective function in order to obtain their fitness 

values. Higher fitness values are desired while SIA 

is dealing with a maximization problem. On the 

other hand, if the problem is a minimization 

problem, the objective function is modified in such 

a way as to transform it into a maximization 

problem. In our case, the makespan must be 

minimized; a candidate solution with a high 

makespan is assigned a low fitness value.  

 

For an antibody i, the fitness function can be 

defined as: follows:  

                       

 

       

 
 

       
  
   

         

where f(i) and Cmax(i) are the fitness value and 

the makespan of the antibody i, and SP is the size of 

the population.  

3.3.8 Affinity 

The selection mechanism depends on the 

probabilities calculated by both the good value and 

affinity value. In order to better assess the 

effectiveness of the AIS affinity function, we apply 

uniform crossover, CUS, and the single-point 

mutation, SPM. In this context, the affinity 

assessment of SIA increases the diversity of 

antibodies in a population and therefore allows for 

extensive search space in exchange of computing 

time. The main challenging question is whether for 

such a complex problem the affinity calculation is 

worth its cost. This is to say the proportion of the 

time that it takes for the algorithm to complete the 

computations. In the following, we discuss the 

computation procedure of the affinity. 

3.3.9 Affinity computation algorithm 

To compute the affinity, the antibodies are 

compared to the best known antibody (BKA) 

obtained so far. Affinity simply expresses the 

similarity between an antibody and BKA. The 

theory of affinity is used to estimate the probability 

of data reoccurrence. (Norman  & Bean, 2001) 

defines the entropy  of the data, H(x), of a discrete 

random variable X = {x1, x2,. . . , Xn} with 

probability mass function P (X = x) = pi, i = 1, 2,. . . 

, N such that: 

 

                

 

   

       

 

The procedure of data entropy provides the 

resemblance of the antibody i (or arrangement i) to 

a reference antibody (or arrangement). This can be 

computed using the formula:  

                    
 

  
 

 
    

 
   

                     

where aff (i) is the resemblance size, k is the size of 

the population, and                        . 

 

Before  

 Mutation 
1,43 2,43 1,88 2,53 2,67 1,75 

      

After   

 Mutation 
1,43 1,86 1,88 2,53 2,67 1,75 
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The antibody Affinity for every value in our 

problem is considered as follows: 

Every condition has a mass that displays its rank 

(represented via Mi, i = {1, 2, 3, 4}). If a condition 

is met, the Work j obtains its mass, and the total rate 

of the masses is the percentage of completed 

resemblance Work j. After computing the similarity 

ratio of each Work, the average similarities of the 

works are used as the affinity of the candidate 

antibody. 

4 RESULTS AND DISCUSSION 

The aim of this section is to assess our multi-

agent approaches based on the AIS. This include 

comparing our approach to other existing heuristics 

such as PSO, GA, LSA and NEHH. All the 

experiments are implemented in MATLAB 7, using 

an Intel Core 2 Duo with 3.0 GHz and 4 GB RAM. 

The stopping rule used during the test with all 

instances of heuristics is set at a CPU with limit of 

n
2
 × m × 2.5 Ms (n is the number of Works and m is 

the number of floors). This stopping rule allows 

more time than the number of works (or increases 

number of floors) and is sensitive to increases in the 

number of works than the number of floors 

We use the comparative fraction deviation 

(CFD) as a measure to compare between the 

performance of all the methods implemented. The 

correct solution obtained for each instance (called 

Minsol) is computed by the one of the algorithms. 

The CFD is obtained using the following formula: 

 

      
              

      
            

where Algsol is value of the objective function 

(Fitness) for a given algorithm for an instance. 

Lower values of CFD refer to better performance.  

4.1 Parameter Setting 
It is recognized that the varied heights of factors 

affects the quality of the solutions obtained through 

MAISA. We define a set of operators on the number 

of Agent (NA), the size of the population (SP), the 

number of solutions copied directly to the 

subsequent population (Nr), the possibility of 

mutation (Pm), the mass of features similarity (M1, 

M2, M3, M4), the Affinity Threshold (AT), and 

Affinity Setting (AS). Tab. 6 display the heights 

measured. 

A set of 30 instances in 3 groups 3 (n = 50, 80, 

100) is generated and solved by the algorithms. 

After analyzing the results obtained from MAISA, 

we select:  Later examining the consequences 

MAISA we select NA=30, Nr = 20, Pm = 0.20 and 

SP = 100, M1= 0.20, M2 = 0.10, M3 = 0.35 and M4 

= 0.35, AT = 0.80 and AS = 0.60. In other words, if 

the affinity value exceeds 0.6, the probability of 

being selected the selection mechanism is 

multiplied by 0.5. 

 

4.2 Data generation 
The data required to resolve this problematic 

contains the data of the production scheduling with 

sequence-dependent setup times.  

The data comprises the total of Work (n), total of 

floors (m), the total of identical machines at 

Table 5. Computation of Affinity Algorithm 

Calculation of Affinity  Algorithm 

For every Work j do 

   Compute a resemblance report 

End for 

- The average ratio of all Works in an antibody is 

distinct as the general Affinity value of that 

antibody 

- The similarity ratio of Work j is computed by 

comparing the position of this Work by matching 

the antibody and BKA.  

- The order of the Work and the assignment for the 

subsequent floors are found by the following 

instructions: 

 The earliest completion time for Works on the 

previous floor and the first available 

machines, respectively. 

 The similarity ratio is found from the location 

of Work j on floor 1. 

End 

 

Table 6. MAISA Heights factors. 

Factors 
N° of  

 Height 
Heights 

Number of 
Agent  

3 10,20,30 

Size  

Population 

3 50, 100, 150 

(Nr, Pm) 3 (1, 0.10), (2, 0.15), (3, 0.20) 

(M1, M2, 

M3, M4) 

2 (0.20, 0.10, 0.35, 0.35), 

(0.30, 0.20, 0.25, 0.25) 

(AT, AS) 3 0.40, 0.60), (0.60, 0.50), 

(0.80, 0.50) 

 

          Table 7. Parameters and heights 

Parameters Heights 

Number of Works 50, 80, 100 

Number des floors 3, 6, 9 

Dispersal of a machine 
Constant : 2 

Variable : U (1, 3) 

Treating time U (1, 90) 
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respectively floor (mi), variety of treating period 

(Pj,i) and period advances. Is n = {50, 80, 100}, and 

m = {3, 6, 9}. To group the total of machines at 

every floor, we have two groups. In the primary, we 

have a total of unchanging hazard dispersals of 

machines reaching from one to three machines per 

floor, and in the next, we have an enduring number 

of two machines on every floor. Times ready for 

floor 1 are group to 0 for completely Works. 

Periods prepared to floor (i + 1) is the finishing time 

in floor i, so these data should not be produced. 

Tab. 7 displays the parameters and their heights. 

4.3 Experimental results 
We report in this section the results of 

performance of MAISA compared to PSO, GA, 

LSA and NEHH for the scheduling of a HFS with 

SDST using the comparative fraction deviation 

(CFD).  

The experiments are based on all combinations 

of number of Works (n) and floors (m). Tab. 8 

reports the average CFD for each setting of m and n 

and the overall average. 

The results of the experiments, on average for 

each combination of n and m 

Furthermore, we also conduct a variance 

analysis, ANOVA, which allows analyzing the 

differences among group means and variations in a 

sample. For the purpose of this paper, we compare 

the average CFD values of each of the methods we 

implemented. This include the CFD values across 

features, number of works and number of floors of 

all the five algorithms reported in Table 8.  

Fig.5. depicts the graphical representation of 

means and minimum important variance (MIV) for 

each algorithm. Fig 5, in general, illustrates 

substantial differences across the mean CFD values 

among the algorithms. It also suggests the MAISA 

has the lowest mean CFD, which is within an 

acceptable range of deviations. Thus, according to 

Fig. 5, MAISA outperforms the other competing 

algorithms in terms of their CFD. 

 

 

 

 

 

 

 

Fig.5. CFD chart mean and MIV intervals (at 95% 

sureness) for the category of technique 

We further estimate the differences across 

features such as the number of work and number of 

floors on HFS with SDST scheduling algorithm 

presentation. We aim to investigate the behaviour of 

CFD for each the algorithms accounting for the 

differences across the heights of the features. Fig.6 

and Fig. 7 display the graphical representation of 

the mean CFD for each algorithm under different 

features for interaction amid techniques deferent 

number of works and floors s features respectively. 

As shown in Fig 6, MAISA outperforms the 

other competing approaches, where it achieved the 

lowest mean CFD for all different levels of number 

of works, in particular when the number of the 

works is 80. As the number of works increases to 

100, LSA’s mean CFD improves the most, which 

makes LSA the most efficient. PSO mean CFD 

remains relatively stable.  

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 6 CFD chart mean for interaction between 

Aproaches and number of Works feature. 

   Table8. Average CFD for the techniques collected 

by n and m 

n m 
Algorithms 

MAISA PSO GA LSA NEHH 

50 3 2.85 3.36 4.59 7.66 7.79 

 6 2.34 3.64 4.86 7.18 7.86 

 9 2.27 3.37 4.25 7.13 7.95 

80 3 1.83 2.80 5.39 6.17 8.68 

 6 1.69 2.76 5.80 6.03 8.71 

 9 1.28 3.27 4.11 6.22 8.53 

100 3 2.10 3.57 4.58 6.75 7.49 

 6 2.57 3.61 4.47 6.48 7.68 

 9 2.66 3.52 4.81 6.69 7.72 

Average 2.17 3.32 4.76 6.73 7.94 
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Similarly, Fig7 shows that MAISA remains the 

preferred algorithm with the lowest mean CFD in 

all three floors. While its the CFD mean value 

increases to that of PSO when the number of floors 

is 6, it falls substantially when the number of the 

floors is 9. In addition, our findings suggest that 

unlike PSO, GA and LSA, the mean value CFD of 

NEHH improves substantially when the number of 

floors increases to 9,  

 

Fig. 7 CFD chart mean for interaction between 

Aproaches and number of floors feature. 

Each heuristic considered in this paper was 

implemented on the same 3500 dataset. The 

algorithms MAISA, PSO, GA, LSA and NEHH 

were executed 50 times obtaining the minimum 

average loss over the 50 series of each of the 3500 

datasets. The CFDs of all the datasets are presented 

in Table 9. 

 

MAISA has the lowest values for loss statistics 

and finds the minimum loss schedules more 

frequently than other heuristics. The variation 

observed within the 30 series of MAISA, PSO, GA, 

LSA and NEHH will be discussed below. A 

hypothesis test was performed. The results indicate 

that there is a significant difference between the 

average responses. 

 

The difference realized inside the 30 MAISA 

and PSO runs will be debated advanced. A theory 

trial was achieved. The consequence designates that 

there is important variance among the purpose 

answers. Table 10 displays the essential 

computational time for MAISA against PSO.  
 

Based on this data, we can understand the 

solution time for MAISA will meaningfully 

increase as problem size increases. This is practical 

since makespan will meaningfully increase as the 

problem size increases. Table 11 displays the 

makespan value for MAISA versus PSO 

Table 9.CFD statistics for Methods. 

Methods 

CFD Total of 

periods 

MinX 
Setting Normal 

deviation 
Max 

MAISA 0.02 0.03 0.16 2460 

PSO 0.05 0.06 0.10 2580 

GA 0.10 0.07 0.20 2490 

LSA  0.41 0.13 0.53 2620 

NEHH 0.56 0.23 0.64 2780 

X  Using the best of the 20 MAISA runs 

 

                Table 10. PSO solution time versus MAISA. 

Problem  size 

Resolution time 

Reduction Comparable Upsurge 

Problem 
Ratio (%) 

Average 
Reduction 

(%) 

Problem 

Ratio (%) 

Problem 
Ratio (%) 

Average 
Upsurge 

(%) 

Small 35 13.5 55 10 9.8 

Medium 15 12.6 45 40 15.5 

Large  5 5.2 15 80 18.8 

  

 

Table 11. PSO makespan versus MAISA. 

Problem size 

Makespan value 

Reduction Comparable Upsurge 

Problem 
Ratio (%) 

Average 
Reduction 

(%) 

Problem 

Ratio (%) 

Problem 
Ratio (%) 

Average 
Upsurge 

(%) 

Small 55 20 45 0 - 

Medium 70 37 30 0 - 

Large  80 35 20 0 - 
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5 CONCLUSIONS 

The aim of this paper is to propose a new an 

Immune Algorithm to solve the HFS with SDST 

problem on a multi-agents system. For this purpose, 

we applied advanced methods (operator), the 

Hazard key for coding, ranking selection, CUS 

crossover and SPM mutation. 

In addition, we presented a new Empathy 

computation procedure. This procedure is based on 

computing similarity ratio of the antibodies, for 

which we proposed a criterion-based algorithm to 

compute the report's similarity. 

 

We also conducted a simulation based exercise 

to compare the performance of the new method 

proposed, MAISA, to that of some existing methods 

including PSO, GA, LSA and NEHH. The 

performance benchmark suggested in this paper is 

based on CFD, which was estimated for all 

algorithms under different settings including 

number of works (ranging from 30 to 100) and 

floors (ranging from 3 to 9). Our findings suggest 

that MAISA outperforms all other algorithms 

consistently in all different settings. 
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