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ABSTRACT: In this research, a complete investigation on the bending analysis of nonlocal 

functionally graded nanobeams is performed. The material properties of functionally graded 

nanobeam are distributed continuously through thickness direction according to power law 

function. The size dependency of nanobeam is described by the differential constitutive equation 

of Eringen. The equilibrium equations have been derived using the principle of the minimum 

total potential energy, under the assumptions of the classical beam theories such as Euler-

Bernoulli and Timoshenko. The finite element method is employed to discretize the model and 

obtain a numerical approximation of equilibrium equations. The model has been verified with 

peer published works and found an excellent agreement with them. Finite element numerical 

results are presented in both tabular and graphical forms to figure out the effects of different 

material distribution profile, nonlocal effect, transverse shear effect, slenderness ratios and 

boundary conditions on the bending characteristics of nanobeams 
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1 INTRODUCTION  

Nanotechnology is essentially concerned with 

the fabrication of FGM and designing structures at a 

nanoscale, which provides a new class of materials 

with radical properties and improved functionality. 

nanobeams are one of the most important 

nanostructures used in systems and nanodevices, 

thence, the understanding of its mechanical 

behavior is inescapable for developing of such 

structures. A brief review of papers devoted to the 

current study is presented as follows: Hamed et al. 

[1] derived equations for local and nonlocal beam to 

investigate the mechanical responses of perforated 

nanobeams on the static bending and buckling by 

considering all the boundary conditions. Belarbi et 

al. [2] proposed a nonlocal finite element 

formulation for flexural behavior of nanocomposite 

nanobeams with a new shear deformation theory. A 

new polynomial higher-order shear deformation 

theory was introduced and developed by Ziou et al. 

[3] for static analysis of functionally graded 

material (FGM) beams. The developed theory does 

not require shear correction factor and satisfies the 

stress-free boundary conditions, such that the 

transverse shear stress varies parabolically through 

the beam thickness. Sayyad and Ghugal [4] 

presented a unified formulation of twenty-one 

nonlocal beam theories to study the bending, 

buckling and free vibration behavior of FG 

nanobeams by using the nonlocal differential 

constitutive relations of Eringen. Merzouki et al. [5] 

developed two-variable-based trigonometric SDT 

for bending, buckling, and free vibration analysis of 

nanobeams. A complete investigation on the 

significance of the transverse shear for the buckling 

analysis of FGM beam was performed by Ziou et al. 

[6]. Two separate finite element formulations were 

developed; one based on Euler-Bernoulli theory and 

the other one on Timoshenko beam theory. The 

results showed that the transverse shear should be 

considered to better predict the critical loads in 

FGM beam type structures. Apuzzo et al. [7] 

investigated the size-dependent bending behavior of 

nanobeams by using the modified nonlocal strain 

gradient elasticity theory by considering all the 

boundary conditions. Hashemian et al. [8] proposed 

a size-dependent beam models using different beam 

theories and nonlocal strain gradient theory 

incorporating surface effects in order to study 

bending and buckling behaviors of nanobeams. 

Nikam and Sayyad [9] presented a nonlocal beam 

theories using unified formulation to examine the 

bending, buckling, and vibration responses of 

simply supported nanobeams. Aria and 

Friswell [10] exploited a nonlocal strain-driven 
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elasticity to probe natural frequency and buckling of 

FGM nanobeams in which the material properties 

were assumed to obey a power-law function. 

Eltaher et al. [11] presented coupled influences of 

nonlocal size scale and surface energy properties on 

bending and vibrational behaviors of piezoelectric 

thin nanobeams. Barretta et al. [12] employed the 

stress-driven nonlocal elasticity approach with the 

Euler-Bernoulli FGM nanobeam model and proved 

the inapplicability of the strain-driven integral 

model on the solution. Exact solution for bending 

analysis of FGM nanobeams was presented. Eltaher 

et al. [13] investigated the static-buckling behavior 

of functionally graded (FG) nanobeams 

numerically; they used the nonlocal elasticity theory 

introduced by Eringen. Simsek and Yurtcu [14] 

examined analytically bending and buckling of FG 

nanobeam based on the nonlocal Timoshenko and 

Euler–Bernoulli beam theories.  

In the present work, a nonlocal finite element 

model is developed to study the static bending of 

FGM nanobeams. Two separate engineering beam 

theories are presented with details, one missing 

transverse shear (NEBT), and the other take it into 

account (NTBT). The nonlocal elastic behavior is 

described by the differential constitutive model of 

Eringen. The material properties of FG nanobeams 

are assumed to vary through the thickness according 

to the power law. The effects of nonlocal parameter, 

transverse shear effect, slenderness ratio, various 

material compositions and boundary conditions on 

the static behavior of the FGM nanobeams are 

discussed. 

To our best knowledge, there is no reported and 

detailed work on the analysis of nonlocal 

functionally graded nanobeams including the effect 

of power law index, nonlocal effect, transverse 

shear effect, slenderness ratios and boundary 

conditions in the literature. It is believed that the 

presented results will provide a reference with 

which other researchers can compare their results. 

2 MATHEMATICAL FORMULATIONS 

2.1 Material properties 

An FGM is defined to be a material which has a 

non-uniform gradation in the thickness direction. 

Topmost surface consists of only metal and bottom 

surface is only ceramic, In between a mixture of the 

two materials. The material variation is dictated by 

a parameter, “p”. At p = 0 the beam is a fully metal 

beam while at p = ∞ the beam is fully ceramic.  The 

typical material property P is varied through the 

nanobeam thickness according to power law 

distribution of the volume fraction of the 

constituents. 
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Where P denotes the material properties of FGM 

beam (ie., modulus of elasticity E and shear 

modulus G). The subscripts c and m refer to the 

ceramics and metal respectively; the parameter p is 

known as the power law index of FGM. Also, h is 

the thickness of beam and z is the coordinate in the 

thickness direction. The variation of the volume 

fraction of the ceramic constituent along the 

thickness of the FGM beam is plotted in Fig. 1 with 

respect to various values of p. The effect of 

Poisson’s ratio on the deformation is much less than 

Young’s modulus and that has been confirmed by 

Ziou et al. [15], Delale and Erdogan [16] with an 

energetic method. Therefore, the same Poisson’s 

ratio is adopted for both materials in the present 

analysis. 

 

Fig. 1 The variation of the volume fraction of the 

ceramic constituent along the thickness 

2.2 Nonlocal Elasticity Theory 

In the classical (local) elasticity theory, the stress 

at a point depends only on the strain at the same 

point, whereas in the nonlocal elasticity theory the 

stress at a point is a function of strains at all points 

in the continuum (Eringen, [17]). Therefore, the 

nonlocal stress tensor at point x is expressed by 

Reddy et al., [18] as: 
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V
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(3) 

The above original designs are transformed 

individually into their corresponding generalized 

chains (kinematic chains).  The generalized chain 

will be involved in various types of members 

(edges) and joints (vertices, or said kinematic pairs) 

for all possible assembly in the following steps. 
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Where 
 'T x

 is the classic macroscopic stress 

tensor at point x,
 x

 is the strain tensor, 
 C x

is 

the fourth-order elasticity tensor,
 ' ,K x x 

 is 

the nonlocal modulus,
' x x

 is the Euclidean 

distance, and 0 / e a l is defined as small scale 

factor. 0e is a constant to adjust the model to match 

the reliable results by experiments or other models, 
a is internal characteristic length (e.g. lattice 

parameter, C–C bond length, granular distance, 

crack length, wavelength), and l  is the external 

length.  

A simplified form of the constitutive relation 

may be represented as: 

   2 2 21 l t 
 (4) 

Where 2 is the Laplacian operator. The 

nonlocal behavior for a beam structure can be 

neglected in the thickness direction. Therefore, Eq. 

(4) takes the following form: 
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The classical local elasticity theory is recovered 

from Eqs. (5 and 6) when 
2 2

0 0 a e  

2.3 Nonlocal Beam Theories 

2.3.1 Nonlocal Timoshenko Beam Theory (NTBT) 

Based on Timoshenko beam theory, the 

kinematic relations are given by. 
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(7-a) 
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(7-b) 

Where 
 

0 denotes the displacements of the 

beams axis.  is the total bending rotation of the 

cross-section 

The axial and transverse strains are deduced 

from Eqs. (7) as: 
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0

xx is the extensional strain and 
0

xx  is the 

bending strain. 

An elastic body is in equilibrium, if the total 

virtual work done by actual external and internal 

forces is zero 

  
   int 0extW W 

 
(10) 

The virtual strain energy intW  and the virtual 

work done by external loading texW are given 

respectively by: 
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 f x
and 

 q x
 are the axial and transverse 

distributed loads, P is the applied axial compressive 

force, V is the external shear force, M is the 

external bending moment. 

Substituting Eqs. (11) and (12) into Eq. (10), 

integrating by parts and setting the coefficient of the 

admissible displacement and rotation to zero yields: 
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By using Eqs. (3), (4), (8), (9) and (13), forces 

and moment resultant of the nonlocal FGM 

Timoshenko beam in terms of displacement can be 

obtained as follows: 
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ˆ
aD Is the axial stiffness, 

ˆ
bD is the bending 

stiffness, 
ˆ

abD is the coupling axial-bending stiffness 

and 
ˆ

sD  is the shear stiffness. These stiffness 

coefficients can be calculated by: 
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The nonlocal normal force can be obtained by 

differentiating Eq. (13-a) and substituting the result 

into Eq. (14) as following:  
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(

19) 

The nonlocal bending moment expression is 

given by substituting the second derivative of M by 

eliminating the shear force Q between Eqs. (13-c) 

and (13-b) 
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The nonlocal shear force need to be determined 

by substituting the second derivative of Q from Eq. 

(13-c) into Eq. (16) as follows: 
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2.3.2 Nonlocal Timoshenko Beam Theory (NTBT) 

Based on Euler-Bernoulli beam theory, the 

kinematic relations are listed as follows: 
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The nonzero strain according to Euler-Bernoulli 

beam theory can be expressed by: 
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In accordance with the same process that was 

applied for Timoshenko beam theory, the nonlocal 

axial normal force and bending moment can be 

found according the following equations:  
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3 NUMERICAL RESULTS AND 

DISCUSSION 

Model validation was firstly presented to verify 

the efficiency of the present formulations with peer 

published works. For this purpose of verification, 

the non-dimensional maximum deflection for 

completely homogenous ceramic nanobeam 

obtained from the present model is compared with 

those obtained from Simsek and Yurtcu [14] and 

tabulated in Table 1. The geometrical and material 

properties of a nonlocal FGM beam used in this 

subsection according to Simsek and Yurtcu [14]. 

The non-dimensional maximum deflection is 

defined as following: 

max max 4

0

100
EI

w δ
q L

= ´ ´

 
(26) 

As can be observed from the table 1, the 

predicted results given by the present formulations 

are in good agreement with those reported by 

Simsek and Yurtcu [14] for all nonlocal parameter 

μ. It is interesting to note that the results of Simsek 

and Yurtcu [14] are evaluated based on analythical 

solutions under the assumption of Fourier series. 

3.1 Slenderness Ratio Effect 

The effects of geometrical and nonlocal 

parameters on the non-dimensional maximum 

deflection of simply supported nanobeam (S-S), 

using NCBT and NTBT are illustrated in Table 2 

and Fig. 2.  

It is worth noting that all the values of the 

deflection increase with an increase of the nonlocal 

parameter. Furthermore, the difference between the 

values predicted by NEBT and NTBT theories get 

more pronounced at small values of length to 

thickness ratio (short nanobeams), which confirms 

the importance of using the NTBT theory for non-

slender beam, as the slenderness ratio has no 

significant effect on non-dimensional maximum 

deflection for NEBT theory.  

Similar observations have been shown using 

plots in Fig. 2, the difference between the values 

predicted by NEBT and NTBT theories decreases 

with an increase of the nonlocal parameter. The 

maximum difference is observed for μ=0. 

3.2 Transverse Shear Effect 

Table 2 and Fig. 3 illustrate the effects of 

slenderness ratio and nonlocal parameter on the 

deflection for simply supported nanobeam using 

two formulations. 

 

Fig. 3 The variation of non-dimensional deflection 

with respect to μ and L/h (S-S) 

For a constant nonlocal parameter, the non-

dimensional deflection does not match for lower 

slenderness ratio, which emphasizes the effect of 

transverse shear that increases the flexibility of 
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thick beams and therefore reduces the deflection. 

By comparing the two formulations, the deflection 

of the Timoshenko nanobeam is higher than the 

Euler-Bernoulli nanobeam, due to missing the shear 

effect in the later. The values obtained with 

nonlocal Timoshenko beam theory converged to 

those obtained by nonlocal Euler-Bernoulli theory 

after L/h=20 and the two curves coincide after 

L/h=50. 

3.3 Boundary Condition Effect 

In this section, finite element solutions for 

bending analysis of nanobeams subjected to 

uniform load are carried out. Material properties of 

FGM constituents used here according to 

Alshorbagy et al. [19]. Different boundary 

conditions are considered. The obtained results are 

evaluated with the existing solutions and an 

excellent agreement is observed for all nonlocal 

parameter values and all boundary conditions. It is 

important to note that the NEBT model is used only 

in this section, 

 

Fig. 4 The effect of nonlocal parameter on non-

dimensional maximum deflection for different 

boundary conditions 

From table 3 and figure 4, it can be observed that 

with raising the nonlocal parameter, the non-

dimensional maximum deflection increases for S-S 

and C-S end conditions, and decrease for C-F 

counterpart. Furthermore, the nonlocal parameter 

has no significant effect on non-dimensional 

maximum deflection for C-C end condition. Similar 

results have been shown using plots in Fig. 4, the 

nonlocal parameter is more prominent with C-F end 

conditions compared to S-S, C-C and C-S 

counterparts. By the way, the values of the non-

dimensional maximum deflection with C-F 

nanobeam are higher than those for the other 

boundary conditions. Accordingly, C-F boundary 

conditions are more affected by the nonlocal 

parameter compared to the other boundary 

conditions. In other words, the influence of nonlocal 

parameter decreases as the rigidity of the nanobeam 

increases. 

3.4 Power law index effect 

After validation of the homogenous nanobeam, a 

systematic analysis of nonlocal FGM nanobeam 

should be conducted to establish the trend of 

nonlocality, slenderness ratio, material distribution 

profile on the bending behavior. An FGM 

nanobeam is considered for the study, the topmost 

surface of the nanobeam is pure metal, whereas the 

bottom surface is only ceramic. The material 

properties of steel and ceramic are given in table 4. 

The influence of power-law index, nonlocality 

and length-to-thickness ratio on the non-

dimensional deflection for S-S FGM nanobeam is 

exhibited in table 5 and figure 5.  

As can be observed, the maximum deflection 

values are obtained for full metal nanobeams (p=0). 

As the power-law index increases, the deflection 

shows a downward trend for all nonlocal parameters 

and all length-to-thickness ratios. As mentioned 

earlier, the values of the deflection increase with an 

increase of the nonlocal parameter by using both 

beam formulations, slenderness ratio has no 

significant effect on non-dimensional maximum 

deflection for NEBT theory. 

 

Table 1 Non-dimensional maximum deflections of homogenous ceramic nanobeam for S-S beam subjected to 

uniform load 
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Table 2 Effects of (L/h) and nonlocal parameter (μ) on non-dimensional maximum deflection for (S-S) nanobeam 

 

L/h Theories μ=0 μ=1 μ=2 μ=3 μ=4 

10 

NCBT 1,3026 1,4276 1,5526 1,6777 1,8027 

NTBT 1,3351 1,4601 1,5851 1,7102 1,8352 

% diff. 2,4343 2,2259 2,0503 1,9004 1,7709 

20 

NCBT 1,3021 1,4271 1,5521 1,6771 1,8021 

NTBT 1,3102 1,4352 1,5602 1,6852 1,8102 

% diff. 0,6182 0,5644 0,5192 0,4807 0,4475 

50 

NCBT 1,3009 1,4258 1,5507 1,6757 1,8005 

NTBT 1,3022 1,4271 1,552 1,6768 1,8017 

% diff. 0,0998 0,0911 0,0838 0,0656 0,0666 

 

 

 

Fig. 2 The effect of nonlocal parameter on the per cent difference in non-dimensional deflection 
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Table 4. Material properties of FGM constituents 

Properties Unit Steel Ceramic 

E  TPa 0.25 1 

ν  / 0.3 0.3 

Table 5. Non-dimensional maximum deflection of the nonlocal simply supported FGM nanobeam under uniform 

load 

L/h p Nonlocal parameter  μ 

0 0.5 1 1.5 2 

NEBT NTBT NEBT NTBT NEBT NTBT NEBT NTBT NEBT NTBT 

10 0 5,2083 5,3383 5,4583 5,5883 5,7083 5,8382 5,9584 6,0883 6,2083 6,3383 

1 2,3674 2,4194 2,4811 2,5331 2,5947 2,6467 2,7084 2,7604 2,8221 2,8741 

2 2,0827 2,4783 2,1407 2,1841 2,2388 2,2822 2,3369 2,3802 2,435 2,4783 

3 1,8853 1,9253 1,9759 2,0158 2,0663 2,1063 2,1568 2,1968 2,2473 2,2873 

4 1,7865 1,8248 1,8723 1,9105 1,9581 1,9963 2,0438 2,0821 2,1296 2,1678 

30 0 5.2083 5.2306 5.4583 5.4813 5.7083 5.7317 5.9584 5.9820 6.2083 6.2324 

1 2.3674 2.3759 2.4811 2.4898 2.5947 2.6036 2.7084 2.7174 2.8221 2.8312 

2 2.0427 2.0499 2.1407 2.1481 2.2388 2.2463 2.3369 2.3445 2.4350 2.4427 

3 1.8853 1.8920 1.9759 1.9826 2.0663 2.0732 2.1568 2.1638 2.2473 2.2544 

4 1.7865 1.7929 1.8723 1.8788 1.9581 1.9646 2.0438 2.0505 2.1296 2.1364 

100 0 5,2083 5,2096 5,4583 5,4596 5,7083 5,7096 5,9584 5,9596 6,2083 6,2097 

1 2,3674 2,3671 2,4811 2,4807 2,5947 2,5943 2,7084 2,708 2,8221 2,8216 

2 2,0427 2,0423 2,1407 2,0404 2,2388 2,2384 2,3369 2,3365 2,435 2,4345 

3 1,8853 1,885 1,9759 1,9755 2,0663 2,066 2,1568 2,1564 2,2473 2,2469 

4 1,7865 1,7863 1,8723 1,872 1,9581 1,9578 2,0438 2,0435 2,1296 2,1292 

 

 

 

 

Fig. 5. The variation of non-dimensional deflections with respect to power-law index and nonlocal 

parameter for S-S FGM nanobeams (TBT): a) L/h=10, b) L/h=30, c) L/h=100 
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4 CONCLUSION 

In this research, a total disquisition on the 

significance of slenderness ratio, nonlocality 

parameter, transverse shear, boundary conditions 

and power law index for the bending analysis of 

nanobeams made of FGM is carried out. To 

accomplish this, classical beam theories such as 

Euler-Bernoulli and Timoshenko are used. It is 

shown through numerical results that: 

The values of deflection increase with an 

increase of the nonlocal parameter.  

The difference between the values predicted by 

the two theories get more pronounced for short 

nanobeams, which confirms the importance of using 

the NTBT theory for non-slender beam 

The slenderness ratio has no significant effect on 

non-dimensional maximum deflection for NEBT 

theory. 

The difference between the values predicted by 

the used theories decreases with an increase of 

nonlocal parameter. The maximum difference is 

observed for μ=0.  

For a constant nonlocal parameter, the non-

dimensional deflection does not match for lower 

slenderness ratio, which emphasizes the effect of 

transverse shear that increases the flexibility of 

thick beams and therefore reduces deflection. By 

comparing the two formulations, the deflection of 

Timoshenko nanobeam is higher than Euler-

Bernoulli nanobeam, due to missing a shear effect 

in the later.  

With raising the nonlocal parameter, the non-

dimensional maximum deflection increases for S-S 

and C-S end conditions, and decrease for C-F 

counterpart. Accordingly, the nonlocal parameter 

has no significant effect on non-dimensional 

maximum deflection for C-C end condition.  

The nonlocal parameter is more prominent with 

C-F end conditions compared to S-S, C-C and C-S 

counterparts. By the way, the values of the non-

dimensional maximum deflection with C-F 

nanobeam are higher than those for the other 

boundary conditions.  

C-F boundary conditions are more affected by 

the nonlocal parameter compared to the other 

boundary conditions. In other words, the influence 

of nonlocal parameter decreases as the rigidity of 

the nanobeam increases. The results also show that 

the maximum deflection values are obtained for full 

metal nanobeams (p=0). As the power-law index 

increases, the content of ceramic (metal) in FGM 

increases. 
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6 NOTATION 

FGM - Functionally Graded Material 

C-C - Clamped-Clamped 

C-F - Clamped-Free 

C-S - Clamped-Simply supported 

NEBT - Nonlocal Euler-Bernoulli Theory 

NTBT - Nonlocal Timoshenko Theory  

S-S - Simply Supported 

 

 


