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ABSTRACT: Integrating machine learning into the monitoring of automated production 

systems is key to optimizing energy use and reducing economic and environmental impacts. 

Cement production, particularly the kiln workshop, represents a complex and vital cement 

manufacturing process in a cement plant (SCIMAT-Algeria). Over recent years, various 

machine learning methods have been proposed to tackle these issues by predicting gas amounts. 

This study evaluates the effectiveness of several supervised machine learning techniques, 

including Decision Tree (MSE: 83.1676, R²: 0.9999), Linear Regression (MSE: 0.2174, R²: 

0.9999), Support Vector Machines (MSE: 0.2212, R²: 0.9999), and Random Forests (MSE: 

30.0465, R²: 0.9999). These results demonstrate a significant impact by preventing unit 

shutdowns, reducing raw material costs, and optimizing energy consumption. 

KEYWORDS: Machine Learning; Energy Optimization; Production Efficiency; 

Manufacturing Supervision; Control Systems 

 

1 INTRODUCTION 

Automation has not eliminated malfunctions that 

can cause unnecessary stops during process 

execution. These problems have forced industries to 

seek effective solutions, such as new technologies 

and Artificial Intelligence (AI), including Machine 

Learning (ML). These are used in several fields 

such as manufacturing systems (Karrupusamy, 

2020), economy (Nosratabadi et al., 2020), industry 

4.0 (Çınar, 2020), healthcare and medical 

informatics (Kavitha et al., 2024), photovoltaics 

(Buratti, 2024), Physics (Jain, 2024), oil and gas 

industry (Kanoun, 2024), and many other domains. 

ML is an application ability system that learns 

and improves automatically from experience 

without being explicitly programmed. It focuses on 

developing computer programs that access and use 

data to learn independently (Asongo, 2021). Data-

driven ML techniques can discover highly complex, 

nonlinear patterns in various data types and sources. 

They transform the raw data into feature spaces or 

models, which can then be used for prediction, 

regression, detection, forecasting, or classification 

(Ayaz, 2021; Taffese & Espinosa-Leal, 2022). 

One industry that requires the integration of 

intelligent techniques is cement production, where 

cement quality depends strongly on the 

effectiveness of all phases, from raw material 

extraction to obtaining the product. The crucial 

phase is the kiln workshop due to the complexity of 

physical processes and chemical reactions that 

occur inside the kiln, which makes it difficult to 
automate its operation. Also, it’s the most energy-

intensive workshop, representing approximately the 

highest percentage of the total energy use (Fatahi et 

al., 2023).  

Our field of study is the energy-intensive 

process, the kiln workshop in a cement plant 

(SCIMAT-Algeria). The main objective is 

a predictive development model of the gas quantity 

required for clinker production. The supervised ML 

algorithms including Support Vector Regression 

(SVR), Random Forests (RF), Decision Trees (DT), 

and Linear Regression (LR) are applied to the data 

collected from the real-time automatic industrial 

system of the kiln workshop. Through a 

comparative analysis of these methods, we aim to 

provide information on their efficiency and 

applicability in industrial environments. 

The paper begins with a literature review, 

articles, and previous studies on the evolution of 

ML methodologies in the field of defect prediction 

of industrial processes. We then illustrate the 

materials, data, and the kiln workshop process used 

in our approach. Then, a section on the evolution of 

supervised ML methods. The next section focuses 

on the results and performance measurement. The 

paper ends with final suggestions, limitations, and 

future work of this study. 
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2 MOTIVATION AND CONTRIBUTION 

This study contributes to the kiln workshop in 

the cement production process. This zone 

determines the chemical composition and properties 

of the final cement and also consumes a significant 

amount of energy, whether through the gas burner 

entering the kiln or by utilizing the heat exiting the 

kiln to enter the cyclones, where it heats the raw 

material and prepares it for the preheating stage. 

This also helps avoid under-burning, which leads to 

losses, or over-burning, which causes briquettes to 

fall into the kiln, resulting in kiln shutdown. 

Therefore, supervised ML techniques integrated 

into the kiln workshop are necessary to avoid 

several challenges. The first and most important is 

the need to optimize energy consumption, in which 

the high temperatures required for clinker formation 

contribute to substantial energy expenditures, 

making energy efficiency a major concern. In 

addition, inefficient clinker processes can lead to 

lower product quality, increased production costs, 

and high environmental impact due to higher 

emissions per rotary kiln. 

Finally, we aim to develop an intelligent model 

that can optimize the process and predict the 

amount of gas in the kiln process, simplify the 

monitoring process, reduce maintenance costs, and 

predict equipment failures. 

3 LITERATURE REVIEW 

Artificial Intelligence (AI) refers to the 

development of machines that can perform tasks 

traditionally requiring human intelligence, such as 

learning, problem-solving, and decision-making. 

The work conducts a literature survey on AI, 

offering an overview of its applications, challenges, 

and advancements. ML, a subset of AI, involves 

creating algorithms that learn from data or past 

experiences to perform tasks without explicit 

programming.  

According to (Sarker, 2021), several ML 

approaches, tools, and techniques exist, each with 

advantages and limitations. Many of these, explore 

applying ML techniques in manufacturing systems, 

for quality monitoring and prediction (Ismail et al., 

2021), focusing on supervised and unsupervised 

learning methods and their significance in 

maintaining product quality and operational 

efficiency. Other authors (Yang et al., 2021) discuss 

various algorithms and techniques that improve 

reliability and efficiency in power systems, 

shedding light on contemporary control strategies. 

(Lei, 2020) presented the milestones in intelligent 

fault diagnosis using ML methods. Research 

(Carvalho, 2019; Dev, 2021) provide a systematic 

ML techniques study for predictive maintenance 

and efficiency enhancements in manufacturing. 

Current works (Alzubi, 2018; Muhammad, 2015) 

synthesize existing methodologies and applications, 

delivering valuable insights into the strengths and 

weaknesses of various supervised learning 

techniques.  

Many ML techniques have been successful in 

manufacturing and are already being implemented 

in industrial applications (Çınar, 2020; Zermane, 

2022b). (Alghobiri, 2018) performed a comparative 

analysis of three ML algorithms, DT, Naïve Bayes 

(NB), and SVM, where SVM is the best classifier. 

(Ayaz, 2021) evaluates various ML algorithms, DT, 

Artificial Neural Networks (ANN), Bagging, and 

GB, for predicting concrete's compressive strength 

at high temperatures where Bagging proved most 

effective, excelling in anomaly detection. RF 

method demonstrated that it’s the best algorithm in 

approaches (Mokhtari et al., 2021; Ruiz de Miras et 

al., 2024). According to (Jain, 2024), SVM is the 

best classifier, after comparing various ML 

algorithms, to predict the chloride resistance of 

concrete. The authors  (Kanoun, 2024) demonstrate 

that Gradient Boosting (GB) is also the best 

classifier for predicting potential failures in refinery 

piping systems.  

The cement plant is a prime example of a 

complex manufacturing system, especially the 

rotary kiln workshop. Several papers review the 

industrial applications of rotary kilns across sectors, 

emphasizing key energy consumption factors 

(Vijayan & S, 2014; Voldsund, 2019). The role of 

refractory bricks in energy reduction is also 

discussed, with a study (Atmaca, 2014) offering 

optimization solutions for kiln operations. Research 

(Kabul, 2015; Sati, 2022; Tua, 2022) presented the 

importance of coal usage, feed amount, kiln 

temperature, and heat loss in determining energy 

consumption in the calcining zone. Additionally, 

(Crego, 2024) examines transient mathematical 

modeling of gas rotary kilns for energy recovery to 

enhance thermal efficiency.  

According to previous literature, cement 

manufacturing systems must be optimized by 

integrating AI techniques. (Oguntola, 2024) review 

research on energy efficiency in cement production 

from 1993 to 2023, focusing on the impact of AI in 

fostering advancements. The clinker quality 

is explained by (Ateş, 2021), who developed a 

prediction model with two techniques, ANN and 

Adaptive Neuro-Fuzzy Inference Systems (ANFIS). 

The study (Fatahi et al., 2023) develops a GB model 

to predict rotary kiln factors like feed rate and 

induced draft fan current, whereas (Usman, 2024) 

develops a hybrid model combining Genetic 
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Algorithms and Neural Networks, to optimize 

kiln operation, ensuring the desired quality.   

This review examines the need for advanced 

solutions to optimize cement manufacturing and 

prevent disruptions and focuses on ML techniques 

used in real-time monitoring. (Zermane, 2022b) 

develop an intelligent system capable of fault 

diagnosis, real-time data classification, and 

forecasting the operational status of the cement 

plant. This study implemented various ML 

algorithms, where RF achieved the highest 

classification accuracy at 97%, proving to be the 

most effective model for fault diagnosis, SVM at 

94.18%, K-NN at 93.83%, DT at 83.73%, and LR at 

80.25%. The proposed approach (Zermane, 2022a) 

involves integrating SVM into the industrial 

supervision system, innovating the complex 

supervision system to learn and maintain the usual 

operator's language, and enabling appropriate 

responses and critical situations prevention. The 

objective of (Zermane, 2024) is to capitalize on 

advancements in ML and DL techniques to build 

robust predictive models, using historical data, for 

accurate real-time predictions in the materials 

quantity estimation in a cement plant.  The ML 

regressors were evaluated based on several metrics 

SVR, RF, Multi-Layer Perceptron (MLP), and GB, 

where RF (R-squared 0.9990, MAE 0.0026) and 

SVM (R-squared 0.9739, MAE 0.0403) are the best 

metrics. 

4 MATERIALS 

Our approach is applied to the kiln workshop in 

the SCIMAT plant located in the East of Algeria, 

which contains the following three zones: 

preheating tower, rotary kiln, and balloon cooler 

when the role is cooking raw meals to obtain 

clinker. Figure 1 shows the clinker production 

process.  

 

 

Fig. 1 The clinker production process 

 

First, the raw meal is heated to about 800 °C in a 

cyclone preheater, where the powder poured from 

the top descends to the entrance of the rotary kiln. 

After the flame reaches 2000 °C and raises the 

material to 1450 °C, calcium oxide reacts, at high 

temperatures with silica, alumina, and ferrous oxide 

to form calcium silico-aluminates, which make up 

the clinker. At the end of the kiln workshop process, 

the material is rapidly cooled in air, which allows it 

to reach clinker temperatures of 150 °C, and it is 

then transported to storage silos.  

Simultaneously with the clinker production 

process, a gas distribution process to various 

machines, equipment, and devices is triggered. The 

gas flow is adjusted to maintain a temperature flame 

between 2000-2200 °C. The airflow rate (primary 

and secondary) is adjusted following that of the gas 

to ensure complete combustion. A gas analyzer is 

placed at the kiln outlet to measure the percentage 

of CO in the flue gas, which helps control whether 

the combustion is complete. The obtained clinker, 

with a temperature between 1200 and 1400 °C, 

must undergo thermal treatment in the form of air 

quenching, which will then circulate in the cooler's 

balloons, counterflowing to the clinker, promoting 

heat exchange between the two streams.  Next, the 

clinker cools down and exits the cooler at 

temperatures around 200 °C, while the air entering 

the kiln as secondary air heats up and supplies this 

heat to the kiln. Also, the gaseous emissions are 

reused as heated returns inside the oven and the 

preheater to prepare the raw flour.  

The draft fan ensures airflow at the preheating 

tower outlet, which allows air from the balloons to 

the cyclones. Figure 2 illustrates the flow input/ 

output for the kiln workshop. 

 

 

Fig. 2 Flowchart of input/output kiln workshop 

 

Several parameters are monitored during the 

cement manufacturing process, with 42 specific 
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parameters taken for the kiln workshop, which is 

illustrated in Table 1.  

 

Table 1. Description of parameters kiln workshop 

Parameter 

Designation 

Parameter  Measu

re 

(Unit) 

Flowmeter, Flow W1A04_F1 t/h 

Flowmeter, flow W1B04_F1 t/h 

Fan, pressure J1J01_P1 mbar 

Aft_Cyclones, Temp W1A50_T1 °C 

Aft_Cyclones, Pres W1A50_P1 mbar 

Aft_Cyclones, Temp W1A52_T1 °C 

Aft_Cyclones, Temp W1A53_T1 °C 

After_Cyclones, Pres W1A53_P2 mbar 

Aft_Cyclones, Temp W1A54_T1 °C 

Aft_Cyclones, Pres W1A54_P2 mbar 

Fan, Speed J1FN1_S1 % 

Kiln, Pressure W1W01_P1 mbar 

Second_Air,Pres W1K01_P1 mbar 

Fan, Speed J1J01_S1 % 

Fan, Current J1J01_I1 % 

Kiln, NOx W1W01_A4 ppm 

Gas Burner, Flow W1V01_F1 Nm³/h 

Gas Burner, Flow W1V31_F1 Nm³/h 

Total Gas Total Gaz Nm³/h 

Fan, pressure W1V07_P1 mbar 

Prim_ Air Fan, Flow W1V07_F1 m³/min 

Kiln-Gas_Pres 431BU520A01P0

1 

bar 

Kiln, Torque W1W01_X1 % 

Kiln, Speed W1W01_S1 rpm 

Kiln Motor, Current W1W03_I1 % 

Kiln-1, Feed Ratio W1FEED_RATI

O 

 

Total Kiln Feed W1FEED_TOT t/h 

Clinker_Production W1A01_B01_Y1 t/h 

Gas_Consumption W1FUEL_CCS Kcal/K

g 

Elevator, Current H1U07M1I01 % 

Elevator, Current H1U17M1I01 % 

Buff_Hopper, Weight W1A01_W1 t 

Buck_Convey,Current W1U21M1I01 % 

Buck_Convey,Current W1U22M1I01 % 

Buck_Convey,Current W1U27M1I01 % 

Drag_Chain_Convey,

Current 

W1U31M1I01 % 

Clinker_Outlet, Temp W1U01_T1 °C 

OP-PL QCX_W1_PL g/l 

OP-CAOL QCX_W1_CAOL % 

OP-LSF QCX_FOUR_LS

F 

% 

OP-MS QCX_FOUR_MS % 

OP-ALM QCX_FOUR_AL

M 

% 

 

Approximately 480,063 samples were collected 

during the production running line operation in 

2022.  

5 SUPERVISED MACHINE LEARNING 

TECHNIQUES 

Artificial intelligence (AI) is a subset of 

Information Technology that enables systems to 

gather information, understand, learn, and make 

decisions based on their objectives (Batu, 2023). 

ML, a subset of AI, uses algorithms that learn from 

data and past experiences to perform tasks without 

explicit programming. This learning process 

involves recognizing patterns and fitting models to 

data for accurate analysis and results (Geetha, 

2022). The evolution of ML, including its 

techniques and methodologies, has expanded 

significantly (Shalev-Shwartz, 2013), and detailed 

in (Alzubi, 2018). So, ML is widely used for 

prediction and classification to support decision-

making, where his models fall into three categories: 

supervised, semi-supervised, and unsupervised 

(Sarker, 2021). 

This research utilizes a range of ML algorithms 

to accurately forecast the amount of gas required for 

clinker production, including Support Vector 

Machine (SVM), Decision tree (DT), Random 

Forest (RF), and Linear Regression (LR). 

SVMs are supervised learning algorithms that 

use hyperplanes to classify data or perform 

regression, effective in high-dimensional spaces and 

resistant to overfitting, though they require careful 

parameter tuning (Asongo, 2021). Developed by 

Vladimir Vapnik in 1998, SVMs improve upon 

neural networks by optimizing learning through 

hyperplanes (Lalik, 2022). 

DTs are non-parametric models for classification 

and regression, known for their ability to split data 
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based on features and their interpretability (Asongo, 

2021). They use recursive partitioning to create 

homogeneous subgroups and have been utilized 

since their introduction by Morgan and Sonquist in 

1963.  

RFs are an ensemble learning method 

comprising multiple decision trees, enhancing 

classification accuracy through collective voting 

and trained on bootstrap samples with random 

feature selection (Asongo, 2021). Proposed by Tin 

Kam Ho and later refined by Leo Breiman, RFs 

require tuning of key parameters like the number of 

trees (Awad, 2015). 

LR is a classical statistical method for modeling 

the relationship between variables, developed by 

Gauss in the 19th century (Shalev-Shwartz, 2013). 

This model remains relevant in data analysis due to 

its simplicity and effectiveness in handling complex 

data (Kecheng, 2024). 

Each of these ML models has its strengths and 

weaknesses, and their performance depends on the 

nature of the data and the problem they are applied 

to. 

6 METHODOLOGY 

The study methodology, model development, 

and extensive discussions on the implications of our 

findings are based on the rich dataset that allows the 

application of various machine-learning models to 

predict the gas quantity.  

We structured our work according to the 

flowchart illustrated in Figure 3. This flowchart 

outlines the step-by-step process for developing and 

implementing an ML model to predict gas 

quantities and ensure a systematic and efficient 

methodology. 

 

Fig. 3 The workflow used for the ML 

The process begins with dataset preparation, 

identifying input and output parameters using a one-

year historical dataset, followed by data extraction, 

computation, and splitting into training (80%) and 

testing (20%) subsets. Various supervised ML 

models, including DT, SVM, RF, and LR, are then 

trained. Model performance is assessed using 

metrics like root mean square error (RMSE), mean 

square error (MSE), and correlation coefficient. 

Which helps score and compare models to identify 

the best-performing one for gas quantity accuracy.  

The top model, selected through cross-validation 

and evaluation metrics (MSE, RMSE, R²), was 

implemented for predictions and process 

optimization at the SCIMAT plant. Its predictions 

were validated against real results and domain 

knowledge, providing valuable insights to refine 

strategies, optimize processes, and improve kiln 

performance. 

Our methodology is implemented in Python 

(version 3.9.12) using the Anaconda environment, 

which offers a user-friendly interface and includes 

libraries for incorporating ML techniques. 

7 RESULTS AND DISCUSSION 

Exploratory data analysis examines the dataset 

and reveals patterns and relationships influencing 

the clinker firing efficiency. The correlation 

heatmap in Figure 4, helps to understand 

dependencies and interactions between variables, 

supporting decisions on feature selection, model 

building, and process optimization, by the factors 

that may impact process outcomes such as clinker 

production rates and gas quantity. 

 

Fig. 4 Correlation matrix 

The heatmap analysis identifies strong positive 

correlations (deep red cells), with variables like 

―W1A50_T1‖ and ―W1A52_T1‖ (0.99 correlation) 

moving together, indicating they measure similar 

processes. High correlations among variables such 

as ―W1W01_P1,‖ ―W1K01_P1‖ and ―W1W01_A4‖ 
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suggest these belong to the same system. Negative 

correlations (blue cells), such as between 

―W1A04_F1‖ and ―W1B04_F1‖ (-0.88), represented 

the inverse relationships. Clusters of correlated 

variables in the heatmap indicate interconnected 

variable groups, while near-zero correlations, like 

―Total Gaz‖ and ―W1W01_A4‖ show independence. 

Redundant variables, such as ―H1U07M1/01‖ and 

―H1U17M1/01‖ suggest potential multicollinearity in 

models. 

In such cases, feature selection or dimensionality 

reduction techniques can help eliminate redundant 

variables to improve model performance. Feature 

engineering can also benefit from these insights by 

combining highly correlated variables or creating 

new features that capture the relationships, 

improving the ML model's predictive power. 

The ML models trained on the dataset are 

rigorously evaluated using standard metrics to 

assess their predictive performance. The MSE and 

RMSE quantify the accuracy of predictions for 

continuous variables, whereas the R² measures the 

proportion of variance explained by the models 

illustrated in Table 2. 

Table 2. Model results 

Method MSE RMSE R-

squared 

Linear Regression 00.2174 0.4663 0.9999 

Decision Tree 82.5384 9.0850 0.9999 

Random Forest 30.8318 5.5526 0.9999 

Support Vector 

Machines  
00.2213 0.4704 0.9999 

Table 2 evaluates the performance of four 

machine learning models, LR, DT, RF, and SVM in 

predicting "Total Gaz" LR and SVM achieve nearly 

perfect accuracy (R² of 0.9999) with low errors 

(MSE around 0.22, RMSE around 0.47), making 

them the best models. RF also shows a high R² but 

has higher errors, while DT, despite a high R², 

overfits the data, resulting in significantly larger 

errors. LR is identified as the optimal model due to 

its strong linear relationship and minimal error. The 

study illustrates the effectiveness of these ML 

techniques for accurate predictions. 

This research compares the performance of 

various ML models in predicting ―Total Gaz‖, with 

the results being evaluated against experimental 

data. The study examines the different performance 

techniques and their effectiveness in making 

accurate predictions, which is illustrated in Figure 

5. 

 

 

 

 

Fig. 5 (a)                        Fig. 5 (b) 

Fig. 5 Predicted Value using ML Techniques 

Each ML model includes two plots: a scatter plot 

(Figure 5. a) comparing actual and predicted "Total 

Gaz" values, where close alignment along the 

diagonal shows a strong fit with low error, and a 

residual density plot (Figure 5. b) to illustrate the 

distribution of prediction errors. 

The SVM model accurately predicts "Total 

Gaz," with actual and predicted values closely 

aligned and residuals centered around zero, 

indicating high accuracy. Minor peaks at the 

distribution's ends suggest rare, larger prediction 

errors. 

The LR model shows strong predictive 

performance for "Total Gaz," with predicted values 

closely matching actual values along the diagonal, 

indicating minimal error. Residuals are centered 

around zero, reflecting high accuracy and low bias, 

as evidenced by the sharp, symmetrical peak. Minor 

bumps in the residuals, however, may suggest 

potential outliers in the data. 
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The RF scatter plot reveals an almost perfect 

diagonal line, indicating a strong correlation 

between actual and predicted "Total Gaz" values, 

demonstrating that the RF model accurately 

captures the relationship between the input features 

and the target variable with minimal deviation. The 

residuals suggest low error rates and highly accurate 

predictions, with near-zero residual values 

indicating minimal bias in the model's output. 

The DT model shows a strong correlation 

between actual and predicted "Total Gaz" values, 

with residuals centered around zero, but it has 

slightly higher error dispersion compared to the RF 

model, likely due to DT's tendency to overfit. This 

results in good accuracy overall but with minor 

prediction deviations for some data points. 

 

Fig. 9 Example figure 

This plot (Figure 9) presents a comparative 

analysis of multiple models (SVM, LR, RF, DT) for 

predicting "Total Gaz" values (gas quantity). The 

models show strong alignment with actual values, 

though slight variations across regions are noted, 

particularly with RF and DT exhibiting more spread 

than SVM and LR. The residuals, centered around 

zero, indicate minimal errors, with LR showing 

slightly tighter clustering. RF's ensemble nature 

leads to more robust predictions compared to 

the DT. Both SVM and LR demonstrate high 

prediction accuracy. 

Evaluation metrics such as MAE, RMSE, and R-

squared are crucial for assessing model accuracy in 

predicting inlet gas levels for the kiln workshop and 

selecting the best model for application in a cement 

plant. This study emphasizes predictive accuracy, 

computational efficiency, and interpretability to 

optimize the clinker production process and 

confirms the reliability of ML models with real 

data. The results underscore the complexity of 

industrial prediction systems, emphasizing the need 

for a multi-method approach, and demonstrate the 

potential of machine learning to enhance gas 

prediction accuracy, reduce costs, and improve 

clinker quality. 

8 CONCLUDING REMARKS 

The study explores the use of supervised ML 

techniques to optimize the kiln workshop process at 

SCIMAT-Algeria. Algorithms like SVM, LR, RF, 

and DT were used to predict gas levels and improve 

efficiency. The models were evaluated using 

metrics such as MSE, RMSE, and R-squared, where 

LR emerged as the best model, validated by real 

process data. Leveraging insights from ML, the 

SCIMAT-Algeria plant could improve energy 

efficiency and optimize production, strengthening 

its competitiveness in the cement industry.  

Future research should expand the number of 

Machine or Deep Learning algorithms to identify 

the best approach for manufacturing processes. The 

ultimate goal is to develop intelligent supervision 

systems to optimize complex processes, reduce 

production costs, and maximize productivity. 
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